Measures of Morbidity and Mortality

Akhilesh Bhargava
MD, DHA, PGDHRM
Professor-Community Medicine \& Director-SIHFW, Jaipur

- The fundamental task in epidemiologic research is to quantify the occurrence of illness
- The goal is to evaluate causation of illness by relating disease occurrence to characteristics of people and their environment
- Rates, Ratios, and Standardized Rates are primary tools for quantifying occurrence of illness

What is a rate?

"a measure of speed with which events are occurring in a population in a specified time period."

- Essentials
- A numerator
- A denominator that "appropriately" relates the numerator to population at risk
- A "unit" such as per 1000, per 100,000 or per million

Why a rate?

- To ensure comparing apples with apples

Prevalence VS. Incidence

Prevalence:

A "snapshot" of disease at a point in time in a population
Relevant for planning of health services
Incidence:
A description of how new cases of disease are occurring. "force of morbidity" "rate of flow" of cases from non disease to disease state
Relevant for exploring causal theories

Prevalence (P) and Incidence (I)

$P \sim 1 \times d$
d=duration
$P=I x d$
If the disease is stable, that is, if the incidence and duration remains constant over time.

Prevalence

number of individuals with the disease

$P=$

number of individuals at risk

Prevalence can be expressed either as a proportion or as a rate

Expressed as a proportion, prevalence is a number between 0 and 1

As a rate, prevalence can be expressed as per 1000, per 100,000, or per whatever

Prevalence: Example

A sample of 1,000 women $70-74$ years. 70 were found to have the diagnosis of rheumatoid arthritis.

The prevalence of arthritis is:
70
$P=-----------=0.07$ for women age $70-74$
1,000
Or
$\mathrm{P}=70$ per thousand for women age 70-74
Or
$\mathrm{P}=7$ percent for women age 70-74
Or..........

Prevalence

Choice of scale of rate usually depends on the ubiquity of the disease.

Thus, more common disease prevalence may be presented as percentage

Rare disease prevalence may be presented as per 100,000 or per million

Incidence Rate: Example

In 1973 there were 29 cases of MI in Jaipur among men 4044 years. The number of person years was 41,532 .

The incidence rate is:

$=0.7$ per thousand per year
= 7 per 10 thousand per year
$=700$ per million per year
To be more accurate, we must add another qualifier, namely, "for men 40-44 years of age"

Incidence Rate

No. of new cases occurring during a period of time

I

"total person time" at risk

What is "person time":
The duration of time a person is at risk

Usually expressed as person years but can be expressed as anything, e.g., person months, person weeks, etc.

"Total Person Time"

- Sum of person time of all individuals at risk Equivalence of "total person time" 50,000 person years
$=5,000$ persons observed for 10 years
= 1,000 persons observed for 50 years
$=10,000$ persons observed for 5 years

Crude and Specific Rates

"Crude": Rates calculated for the "entire" population
"Specific": Rates calculated for "specific" subpopulations.

Ex: Age-specific rates Race-specific rates
Gender-specific rates

Comparing Apples with Apples

In comparing populations (groups) one should recognize that populations (groups) can differ in two important respects:

Subpopulation-specific rates

Distribution of subpopulations

Comparison of Death rates in two population by age

	Age	Population No. proportion		Annual Age Specific Death Rate	Annual no. of deaths	CDR / 1000
Pop. A	<15	1500	30	2	3	45
	$15-44$	2000	40	6	12	$----=9$
	$45+$	1500	30	20	30	5000
	All ages	5000	100		45	
Pop. B	<15	2000	40	2	4	29
	$15-44$	2500	50	6	15	$----=5.8$
	$45+$	500	10	20	10	5000
	All ages	5000	100		29	

$>$ No difference in two population in risk of death
$>$ Population A has higher crude death rate for large aged pop.
$>$ CDR may not always reflect risk of death in a comparative study

Standardization?

Standardized rate = "weighted" average of category-specific rates

Standardized rates can also be called Adjusted rates. For example, age adjusted, gender adjusted, race adjusted, etc.

Adjusted Rates are Created Through Standardization

Standardization: The process by which you derive a summary figure to compare health outcomes of groups

- The process can be used for mortality, natality, or morbidity data

Direct Adjustment

Rates of populations to be compared applied to the standard population

The question: What would be the number of events (deaths, births, etc.) in the standard population if events were happening at the category-specific rates in each population?

Example: Age-Adjustment

A. Direct Method requires -

1. Age-specific rates in the sample population
a) The age of each case
b) The population-at-risk for each age group in the sample
2. Age structure (percentage of cases in each age group) of a standard population

Summary figure is an Age-adjusted rate

Calculation of expected no of deaths by direct method:
 Same age specific rates

	Standard Pop. A \& B combined	Pop. A Age specific death rate	Expected deaths	Pop. B Age specific death rate	Expected deaths
<15	3500	2	7	2	7
$15-44$	4500	6	27	6	27
$45+$	2000	20	40	20	40
All ages	10000		74		74

$>$ While crude deaths were different, adjusted deaths are same for two pop.
>Risk of death is identical in Pop. A \& B
>Age adjustment has removed distortion in risk of death from crude death rate

Calculation of expected no of deaths by direct method: different age specific rates

	Standard Pop. A \& B combined	Pop. A Age specific death rate	Expected deaths	Pop. B Age specific death rate	Expected deaths
<15	3500	2	7	2	7
$15-44$	4500	6	27	10	45
$45+$	2000	20	40	20	40
All ages	10000		74		92

Adjusted rate for Pop. A=74/ 10000 X 1000=7.4
Adjusted rate for Pop. B=92/10000 X 1000=9.2
Different risk of death in two pop. Are preserved by age adjustment

Direct Age Adjustment

$1995-2000$		2001-2005			
Popula tion	No. of Deaths	Death rate/ 100000	Popula tion	No. of Deaths	Death rate/ 100000
900000	862	96	900000	1130	126

Direct Age Adjustment: Comparison of Age specific death rates

	$1995-2000$				$2001-2005$		
Age Gr.	popula tion	No. of Deaths	Death Rate/ 100000	popula tion	No. of Deaths	Death Rate/ 100000	
All ages	900000	862	96	900000	1130	126	
$30-49$	500000	60	12	300000	30	10	
$50-69$	300000	396	132	400000	400	100	
$70+$	100000	406	406	200000	700	350	

Indirect Adjustment

Rates of standard population applied to populations to be compared.

The question: What would be the number of events (deaths, births, etc.) if the particular population was having events at the same category specific rates as the standard population?

Indirect method requires

> 1. Age structure (percentage of cases in each age group) of the sample population
> 2. Total deaths in the sample population
3. Age-specific rates for the standard population
Summary figure is a
Standardized Mortality ratio

Indirect Standardization

- Instead of a standard population structure, you utilize a standard rate to adjust your sample
- Indirect standardization does not require that you know the stratum-specific rates of your cases
- The summary measure is the SMR or standardized mortality/morbidity ratio Observed

SMR = ---------------- X 100

Expected

- An SMR of 100 means no difference between the number of outcomes in the sample population and that which would be expected in the standard population

Indirect Standardization (cont.)

Calculation of the SMR for Male Farmers for All Causes of Death:

Number of Factory workers \&
Age Group (Census, 2001)

Standard Death Rates per 1,000,000 (All Causes of Death)

Expected
Number of
Deaths for
Factory workers \& Managers per
1,000,000
(3) = (1) X (2)

$20-24$	7,989	1,383	11
$25-34$	37,030	1,594	59
$35-44$	60,838	2,868	174
$45-54$	68,687	8,212	564
$55-64$	55,565	22,953	1,275

Total expected deaths per year: 2,083 Total observed deaths per year: 1,464

$$
\text { SMR }=1,464 / 2,083 \times 100=70.3 \%
$$

Indirect Standardization (cont.)

SMR for Tuberculosis for Miners Ages 20 to 59 Years

Age	Estimated Population of Miners	Death Rate (per 100,000) for TB in Males in the General Population	Expected Deaths From TB in Miners if they Had the Same Risk as the General Population	Observed Deaths from TB in Miners
(yr)	(1)	(2)	$(3)=(1) \times(2)$	(4)
20-24	74,598	12.26	9.14	10
25-29	85,077	16.12	13.71	20
30-34	80,845	21.54	17.41	22
35-44	148,870	33.96	50.55	98
45-54	102,649	56.82	58.32	174
55-59	42,494	75.23	31.96	112
Total			181.09	436
SMR = Observed / Expected X 100				
SMR (for 20-59 yr olds) $=436 / 181.09 \times 100=241$				

Indirect Standardization (cont.)

Some individuals contribute different amounts of risk due to length of exposure
Hypothetical Example Illustrating Calculation of stratum-specific SMRs

Age (Yrs.)	Study Cohort		Reference Population Rate per 1,000	Exp	SMR =
	Obs	PersonYears			
	(1)	(2)	(3)	$(4)=(2) X(3)$	(1) / (4)
40-49	6	1,200	2.5	3.00	2.00
50-59	27	2,340	6.1	14.27	1.89
60-69	98	3,750	12.4	46.50	2.11
70-79	48	975	25.0	24.38	1.97
Totals	179			88.15	2.03

Vital Statistics

Indicators of Public Health

- Mortality statistics
- Age specific mortality rates
- Disease specific mortality rates
- Case-fatality
- Life Expectancy
- Maternal mortality rates
- Infant mortality rates
- Morbidity statistics
- Fertility rates
- Vaccination coverage
- Health care utilization
- Health status indicators

Vital Statistics

Systems for collecting vital statistics

- Civil registration system
- Advocated by the United Nations
- Present in industrialized countries
- Costly to develop and maintain
- Alternative methods
- Probability area samples
- Purposeful area samples
- Records-based surveys

Vital Statistics

- Priority in Vital Statistics Collection - based on UN criteria
- Births and deaths
- Marriages
- Divorces
- Fetal deaths
- Annulments
- Judicial separations
- adoptions

Vital Statistics

- Legal documentation
- Assessment
- Demography
- Health

Vital Statistics

- History
- U.S. census every 10 years since 1790
- Mid-point census since 1976
- Census
- Latin - to estimate or assess
- Enumerating the number of people in a given population
- Age, sex, race, household relationships, marital status, number of rooms in house, length of time in residence, rental or ownership, value of home
- Sampling strategies for difficult to reach populations

Mortality Data

- Comprehensive
- Measure of community health
- Track trends over time by region
- Proportionate mortality
- Infant death
- Applies to men and women
- Cohort analysis
- Standardization for comparison across populations
- Demography

Mortality Rate

Total number of deaths
Annual from all causes in 1 yr
Mortality = Rate

Number of persons in the population at mid-year

Mortality Rates Age Specific

Age-specific Annual Mortality Rate

Total number of deaths

 from all causes in 1 yr per age groupNumber of children in the population at mid-year per age group

Mortality Rates: Disease Specific

Total number of deaths
from lung cancer in 1 yr
X 1000
Number of persons in the population at mid-year

Total and Age- Specific Mortality Rate (deaths/ 1000)

Age Group (yrs)	Population	Deaths	Rate *
$0-4$	97,870	383	3.9
$5-9$	221,452	75	0.3
$10-24$	284,956	440	1.5
$25-34$	265,885	529	2.0
$35-44$	207,564	538	2.6
$45-54$	193,505	1,107	5.7
$55-64$	175,579	2,164	12.3
$65-74$	152,172	3,789	24.9
≥ 75	107,114	7,834	73.1
Total	$1,706,097$	16,859	9.9

Infant Mortality Rate

Number of deaths in a year of live-born infants less than 1 year of age

Number of live births in the same year

Source of Error in Mortality Statistics

- Facts inaccurate
- Demographic- age, sex, race, ethnicity
- Marital status
- Occupation
- Place of residence, not occurrence recorded
- Cause of death - very inaccurate
- Immediate cause
- Underlying condition
- Changing taxonomy

Sources of Information

- Deaths
- Death certificate
- Clinical records
- Autopsy
- Surveillance programs
- Village recorders
- Population
- Census
- Hospital admissions
- Fixed cohorts
- Estimates

Case Fatality Rate

Total number of individuals dying during a specified period

Case- of time after disease onset

Fatality =
Rate

Number of individuals with the disease of interest

Proportionate Mortality

Proportionate
Mortality
For a Disease
:---
from the Disease in given yr
:---
year

Comparing Mortality in Different Populations

- Crude
- Age Adjustment
- Direct
- Indirect (Standardized Mortality Ratio)
- Cohort Analysis
- Life-table Analysis
- Median survival
- Life expectancy

Trends in Mortality: Artifactual

Numerator

Denominator

- Errors in diagnosis
- Errors in age
- Changes in coding
- Changes in classification
- Errors in counting population
- Errors in classifying by demographic characteristics
- Differences in proportion of population at risk

Measures of Mortality:

- Mortality rate
- Cause specific
- Age specific
- Case-fatality rate
- Proportionate mortality rate
- Standardized Mortality Rates

Why study Mortality-

- Eternal, ultimate experience
- A measure of disease severity
- Effectiveness of treatment
- Surrogate for incidence (in severe, fatal diseases)
- Comparison of rates in two or more population or one population at different times

Mortality Data- Problems

- Change in coding of ICD revisions
- Changes in definitions of diseases
- Underlying cause of death excludes Information on immediate Cause \& those in between two.
- Denominator may not be available
- Numerator alone does not give rates and calls for standardization

